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A B S T R A C T   

The Segment Anything Model (SAM) is a large-scale model developed for general segmentation tasks in computer 
vision. Trained on a substantial dataset, SAM can accurately segment various objects in natural scene images. 
However, due to significant semantic differences between medical and natural images, directly applying SAM to 
medical image segmentation does not yield optimal results. Therefore, effectively utilizing such a comprehensive 
foundation model for medical image analysis is an emerging research topic. Despite SAM’s current suboptimal 
performance in medical image segmentation, it shows preliminary recognition and localization of tissues and 
lesions that radiologists focus on in medical images. This implies that SAM’s generated masks, features, and 
stability scores hold potential value for medical image diagnosis. Therefore, based on the model output of SAM, 
this study introduces a SAM-based Image Enhancement (SAM-IE) method for disease diagnosis. Targeting pop
ular medical image classification models (e.g., ResNet50 and Swin Transformer), SAM-IE is proposed to enhance 
image inputs by combining the binary mask and contour mask generated by SAM with the original image to 
create attention maps, thereby improving diagnostic performance. To validate the effectiveness of SAM-IE for 
diagnosis, experiments were conducted on four medical image datasets for eight classification tasks. The results 
demonstrate the effectiveness of our proposed SAM-IE model, showcasing SAM’s potential value in medical 
image classification. This study provides a feasible approach for integrating SAM into disease diagnosis.   

1. Introduction 

The Segment Anything Model (SAM) emerges as an innovative 
foundational model for image segmentation in 2023, leveraging the 
vision transformer architecture (Dosovitskiy et al., 2021; Kirillov et al., 
2023). The SAM comprises a vision transformer-based image encoder, a 
prompt encoder, and a lightweight mask decoder. The image features 
extracted by SAM’s encoder are used by the mask decoder to generate 
segmentation results, incorporating the embedded prompt information. 
Trained on an extensive dataset comprising 11 million images with 1 
billion masks, SAM stands out for its notable zero-shot segmentation 
performance on previously unseen datasets and tasks (Huang et al., 
2023; Mazurowski et al., 2023). One of SAM’s key strengths lies in its 
versatility, demonstrating efficacy across a diverse range of segmenta
tion tasks. 

While SAM demonstrates impressive performance in natural image 

segmentation, studies indicate that it may face limitations in segmen
tation tasks requiring domain-specific knowledge, as observed in certain 
medical image segmentation scenarios (Mazurowski et al., 2023; Zhang 
& Jiao, 2023). Deng et al. (2023) assessed SAM’s performance in tumor 
segmentation, non-tumor tissue segmentation, and cell nuclei segmen
tation. Even with 20 prompts on each image, SAM failed to achieve 
satisfactory performance for dense instance object segmentation. Hu, 
Xia, Ju, and Li (2023) performed experiments on multi-phase liver 
tumor segmentation using contrast-enhanced computed tomography 
volumes. The results indicated a significant gap between SAM with a 
limited number of prompt points and the classic U-Net (Ronneberger, 
Fischer, & Brox, 2015). Zhou et al. (2023) assessed the performance of 
SAM in segmenting polyps from colonoscopy images across five 
benchmark datasets in an unprompted setting. The experimental results 
revealed SAM’s lower performance compared to state-of-the-art 
methods. 
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Many research findings highlight limitations in the segmentation 
capability of SAM when directly applied to medical image, revealing 
significant discrepancies across various datasets and tasks. While SAM 
demonstrates exceptional performance in specific objects and modal
ities, it falls short and may even fail in more challenging scenarios, 
particularly when dealing with weak boundaries, low contrast, and 
small, irregular shapes (G.-P. Ji et al., 2023; W. Ji et al., 2023). The 
challenges faced by SAM in medical image segmentation are attributed 
to the intricate modalities, fine anatomical structures, uncertain and 
complex object boundaries, and a wide range of object scales (Huang 
et al., 2023). Furthermore, being pre-trained on the SA-1B dataset, 
which contains 11 million natural images, SAM’s approach of deter
mining boundaries based on intensity variance (G.-P. Ji et al., 2023; Ma 
et al., 2023; Zhang & Jiao, 2023), effective in natural images, proves 
inadequate for medical images due to the crucial role of anatomical or 
pathological structure analysis. Additionally, SAM struggles to associate 
segmentation regions with meaningful semantic classes, hindering its 
application in computer-aided diagnosis. 

In recent years, many studies have been dedicated to improving SAM 
to enhance its applicability in medical image analysis. Due to the less- 
than-ideal results of directly applying SAM to medical image segmen
tation, several studies have focused on how to fine-tune SAM for medical 
image analysis to enhance its reliability. Hu, Li, and Yang (2023) and Li, 
Hu, and Yang (2023) conducted fine-tuning experiments on SAM for 
skin cancer and polyp segmentation tasks, respectively, achieving 
promising segmentation results. While fine-tuning SAM on medical 
datasets holds the potential to improve its segmentation performance, its 
efficacy heavily relies on manually provided prompt information and is 
sensitive to incorrect prompts. In addressing this issue, Gao et al. (Gao, 
Xia, Hu, & Gao, 2023) proposed the Decoupled Segment Anything 
Model, aiming to minimize performance degradation caused by erro
neous prompts. These studies attempt to restructure SAM to adapt it for 
medical image segmentation tasks and enhance the level of segmenta
tion in medical images. 

Due to the model being trained on a large number of natural images, 
SAM has significant limitations in the field of medical image segmen
tation. Currently, research based on SAM in the field of medical image 
analysis mostly focuses on improving the segmentation performance on 
medical images. However, existing studies indicate that it appears to be 
difficult for SAM to achieve high-quality segmentation of medical im
ages, whether through model fine-tuning or adding prompts. Although 
SAM cannot accurately segment medical images without prompting, 
SAM can still distinguish obvious tissues and pathological structures 
according to pixel changes in the images. Medical images carry a sub
stantial amount of information, primarily associated with high image 
resolution and pixel depth, which can exceed the visual discernment 
capabilities of the human eye in distinguishing among numerous gray 
levels (Ortiz, Górriz, Ramírez, Salas-González, & Llamas-Elvira, 2013). 
Enhancing the appearance and visual quality of medical images is 
crucial to provide physicians with valuable information that may not be 
immediately evident in the original image. This enhancement assists in 
anomaly detection, diagnosis, and treatment. In this context, the image 
enhancement (IE) techniques aim to achieve specific improvements in 
the quality of a given medical image. The enhanced image is expected to 
better reveal certain features compared to their original appearance (de 
Araujo, Constantinou, & Tavares, 2014). Therefore, in this paper we 
propose a new IE method based on SAM (SAM-IE), aiming at improving 
the diagnostic accuracy of medical image classification models. Our aim 
is to explore SAM’s potential value in medical image analysis from a 
different perspective. SAM-generated masks and stability scores, 
without additional prompts, prove useful for medical image classifica
tion and diagnosis. Thus, we introduce SAM-IE to enhance inputs for 
medical image classification models. 

A critical difference between SAM-IE and the previous enhancement 
methods (Dinh & Giang, 2022; Rundo et al., 2019) is that the traditional 
IE methods often work at a low level, e.g., de-blurring and noise 

reduction, and the purpose of enhancement is for image reconstruction 
and recovery. In contrast, SAM-IE aims to add high-level structures to 
original images, providing better semantics for the subsequent medical 
image classification models. The SAM-IE enhances images by adding 
semantic structures from a segmentation foundation model. Moreover, 
the SAM-IE opens up new research ideas for SAM in the field of medical 
image analysis and further explores the application values of SAM. On 
the other hand, the image enhancement method proposed in this study 
does not involve complex modifications to the SAM or excessive prior 
prompts, making it convenient for radiologists to directly use SAM in the 
disease diagnosis process. 

In order to test the effect of SAM-IE integrated into medical image 
classification models for disease diagnosis, this paper selects two clas
sification models commonly used in medical image classification tasks, 
and carries out classification experiments on four medical image data
sets respectively. The effect of SAM-IE on medical image classification 
task was analyzed by comparing the classification results before and 
after SAM-IE was used on classification models. Our main contributions 
can be summarized as follows: (1) We propose an image enhancement 
method based on the Segment Anything Model. (2) The SAM-IE method 
we propose can enhance the performance of classification models. (3) 
The SAM-IE demonstrates effectiveness for disease diagnosis across 
various imaging modalities. (4) Our method extends the scope of SAM to 
medical image diagnosis. The second chapter reviews the research on 
application of SAM in medical image analysis. In the third chapter of this 
paper, the SAM-IE methods and model training and deployment pro
cesses are explained in detail. The datasets, the details of the experiment 
and the evaluation indicators are described in chapter four. The fifth 
part of the paper mainly analyzes the experimental results on four 
datasets. 

2. Related work 

2.1. Optimization of SAM on medical images 

The research shows that it is difficult to obtain satisfactory seg
mentation effect by directly applying SAM to medical image segmen
tation task. In order to make better use of SAM in the field of medical 
image analysis, many researches focus on the transformation of SAM and 
the integration of SAM with other methods. Among them, the method of 
fine-tuning a small part of SAM parameters to obtain better medical 
image segmentation has attracted more attention. Ma et al. (2023) 
introduce MedSAM for universal image segmentation by curating a 
diverse and comprehensive medical image dataset containing over 
200,000 masks with 11 modalities and develop fine-tuning approach to 
adapt SAM to medical image segmentation. The proposed MedSAM 
further improves the performance of SAM in medical image segmenta
tion. Wu et al. (2023) introduce Medical SAM Adapter to fine-tuning 
pre-trained SAM with a parameter-efficient fine-tuning paradigm 
using Adaption modules (Hu, 2021). Comprehensive experiments 
demonstrate that by fine-tuning, Medical SAM Adapter can obtain 
comparable performance compared with state-of-the-art methods. 
Zhang and Liu (2023) apply low-rank-based (Hu, 2021) fine-tuning 
strategy to SAM image encoder together with the prompt encoder and 
mask decoder on labeled medical image segmentation datasets. By fine- 
tuning on a multi-organ segmentation dataset, SAM can achieve highly 
competitive segmentation performance compared with state-of-the-art 
methods. Chai et al. (2023) combine an additional CNN as a comple
mentary encoder along with the standard SAM architecture and only 
focus on fine-tuning the additional CNN and SAM decoder to reduce the 
resource utilization and training time of fine-tuning. 

As simple and straight-forward approaches, these methods demon
strate the effectiveness of fine-tuning SAM on domain-specific medical 
datasets to achieve better segmentation performance. However, the use 
of SAM for medical image segmentation still needs to provide additional 
professional tips, and it is difficult to achieve fully automatic medical 
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image segmentation. For the prompt mode, the final segmentation re
sults are highly dependent on the prompt, and the model is still more 
sensitive to error prompts. To issue this challenge, Gao et al. (2023) 
propose the Decoupling Segment Anything Model, which can minimize 
the performance degradation caused by wrong prompts while avoiding 
training image encoder which requires higher GPU cost. Extensive ex
periments demonstrate that the Decoupling Segment Anything Model 
improves the robustness of fully automated segmentation in dealing 
with distribution variations across different sites. Deng, et al. (2023) 
propose to enhance SAM by employing multiple box prompts to estab
lish pixel-level reliability through uncertainty estimation. By generating 
different predictions using different multi-box prompts and estimating 
the distribution of SAM predictions using Monte Carlo simulation with 
prior distribution parameters, the model can estimate the variations by 
aleatoric uncertainty and generate an uncertainty map to highlight 
challenging areas for segmentation, which offers valuable guidance for 
potential segmentation errors and support further clinical analysis. 

Direct application of SAM trained on a large number of natural im
ages to medical image segmentation often fails to achieve satisfactory 
segmentation results. While methods for fine-tuning SAM can enhance 
its performance to some extent in medical image segmentation, specific 
domain expertise is still required for medical image segmentation tasks, 
making fully automatic segmentation tasks difficult to achieve. Other 
methods for improving SAM inevitably require higher GPU costs and 
training dataset costs. Therefore, this paper proposes an image 
enhancement method based on SAM. This method no longer blindly 
pursues higher performance of SAM in medical image segmentation but 
fully utilizes the masks and stability scores generated by SAM to enhance 
medical images, aiding physicians in disease diagnosis. At the same 
time, our method further expands the application scope of SAM in the 
field of medical image diagnosis. 

2.2. Usability extension of SAM on medical images 

In contrast to natural images, medical images are typically stored in 
specific formats like NII and DICOM. To facilitate SAM’s integration into 
medical image analysis, Liu, Zhang, She, Kheradmand and Mehran 
(2023) incorporated SAM into the 3D Slicer software (Fedorov et al., 
2012). This integration allows researchers to perform segmentation 
tasks on medical images with minimal latency, and the segmentation 
process, initiated by a prompt, automatically propagates to the subse
quent slice once the segmentation for a particular slice is completed (Liu 
et al., 2023; Zhang & Jiao, 2023). 

To improve the performance of interactive image segmentation, Dai 
et al. (2023) introduced SAMAug, an innovative visual point augmen
tation technique designed for SAM. SAMAug creates augmented point 
prompts to convey additional information about the user’s intent to 
SAM. Starting with an initial point prompt, SAM generates an initial 
mask, further processed by SAMAug to generate augmented point 
prompts. Integrating these additional points enables SAM to produce 
augmented segmentation masks, leading to enhanced segmentation 
performance. 

While SAM’s performance depends on input prompts, there is a 
growing interest in achieving a fully automatic solution. Shaharabany, 
Dahan, Giryes and Wolf (2023) introduced AutoSAM, incorporating the 
training of an auxiliary prompt encoder to generate a surrogate prompt. 
Unlike traditional prompt types in SAM, such as bounding boxes, points, 
or masks, AutoSAM employs the image itself as input. With the assis
tance of the auxiliary trained network, SAM transitions into a fully 
automatic mode, eliminating the need for prompts and achieving state- 
of-the-art results across various medical benchmarks without fine- 
tuning. 

Cui et al. (2023) presented an approach called all-in-SAM, designed 
to leverage SAM without manual prompts. This framework specifically 
exploits weak annotations and pre-trained SAM for fine-tuning, aiming 
to minimize annotation costs and enhance SAM’s application through 

label-efficient fine-tuning. Additionally, Lei, Xu, Zhang, Kang and Zhang 
(2023) proposed MedLSAM, introducing a localization process by 
identifying six extreme points in three directions of 3D images for any 
region of interest. Subsequently, the generated bounding box is utilized 
by SAM for precise segmentation of the target anatomy, enabling 
automatic segmentation. 

Currently, the application of SAM in the field of medical image 
analysis mostly focuses on image segmentation tasks. Therefore, the 
segmentation performance of SAM on medical images limits further 
utilization of SAM in medical image analysis. This paper proposes an 
image enhancement method based on SAM, challenging the current
view of SAM as only a segmentation tool and presenting a novel 
approach for utilizing SAM as an image enhancement tool in medical 
image diagnosis. 

2.3. Medical image augmentation with SAM 

Different from previous studies, which dedicate to improving the 
medical image segmentation effect of SAM. Zhang, Zhou, Wang, Liang, 
and Chen (2023) did not directly apply SAM for segmentation, but uti
lized the segmentation masks generated by SAM to augment the original 
input medical images. Their proposed SAMAug fuses the original image 
with the segmented prior image and the boundary prior image generated 
by the segmented prior image. The experimental results show that the 
segmentation effect after input augmentation with SAMAug is better 
than that without augmentation This study demonstrates that the SAM 
may not be able to generate high-quality medical image segmentation, 
but these generated masks and features still help boost the segmentation 
model. 

Research indicates that combining SAM’s output images with orig
inal images to generate prior maps can be used to enhance network 
inputs, thereby improving the performance of downstream medical 
segmentation models. Inspired by this, this paper fully utilizes the masks 
and stability scores outputted by SAM to design the SAM-IE image 
enhancement model. The enhanced images can effectively highlight the 
pathological regions in the original medical images and provide atten
tion maps for medical image classification models, thereby enhancing 
the classification performance of the models. The SAM-IE method pro
posed in this paper demonstrates effectiveness in disease diagnosis 
across multiple medical image modalities. 

3. Methods 

The pre-trained model of SAM currently does not achieve the same 
level of segmentation performance in medical images as it does in nat
ural images. However, SAM still excels in highlighting certain note
worthy lesion areas or typical features in medical images. From this 
perspective, SAM is expected to assist in disease diagnosis by enhancing 
image for the classification model. In order to study the impact of SAM- 
IE on the classification performance of medical images, this study uses 
the common medical image classification models (e.g., ResNet50 
(Kaiming, Xiangyu, Shaoqing, & Jian, 2016) and Swin Transformer (Liu 
et al., 2021) to conduct classification experiments on the pre-enhanced 
and post-enhanced images respectively, and analyzes and compares the 
two groups of classification results, as shown in Fig. 1. In Section 3.1, we 
describe the process of generating binary mask and contour mask by 
SAM, and elaborates the process of IE by applying two key masks to 
medical images. Section 3.2 will introduce the training details of the 
medical image classification model using SAM-IE, and explain the model 
testing methods. Section 3.3 will primarily detail the steps for evaluating 
the performance of the classification networks with SAM-IE. 

3.1. Image enhancement with SAM 

Loading pre-trained SAM allows for the generation of segmentation 
masks for medical images. Without adding any prior prompts, SAM is 
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capable of generating segmentation masks for all possible regions in a 
medical image and stores them in a list. Moreover, in SAM segmentation 
experiments, stability scores corresponding to each segmentation mask 
are also outputted along with the segmentation masks. In this paper, 
based on the characteristics of different medical images, segmentation 
masks are filtered according to the stability scores. The stability scores of 
the retained segmentation masks are mapped to grayscale values and 
used to generate a binary mask, which is a grayscale image depicting the 
corresponding regions. Additionally, this paper further extracts the edge 
information from all the filtered segmentation masks to generate a 
contour mask. In summary, for a given medical image, this paper com
pletes the drawing of the medical image binary mask and contour mask 
through the above process, as seen in Fig. 1. 

After obtaining the binary mask and contour mask generated by 
SAM, this study enhances the images by overlaying these two masks 
with the original medical image. Many medical image segmentation 
tasks can be simplified into three types of segmentation tasks, where the 
first type corresponds to the background, the second type corresponds to 
the region of interest (ROI), and the third type corresponds to the 
boundary between ROI and background. Therefore, for three-channel 
color images, we generate enhanced images by overlaying binary 
masks and contour masks with a single channel of the original image. 
Specifically, we first split the original medical image into R, G, and B 
channels. Then, we overlay the contour mask onto the R channel. 
Similarly, we overlay the binary mask onto the G channel. Finally, we 
combine the newly generated R and G channels with the original B 
channel to obtain the final enhanced image (Fig. 1). For medical images 
where the original image is grayscale, we create a three-channel image 
where the first channel consists of the grayscale original image, the 

second channel consists of the overlay of the original grayscale image 
with the binary mask, and the third channel consists of the overlay of the 
original grayscale image with the contour mask. For each medical image 
x in the training set, its enhanced version can be represented as xIE = IE 
(Maskcontour, Maskbinary, x). 

3.2. Classification model training and testing with SAM-IE 

The original training set {(x1, y1), (x2, y2), …, (xn, yn)}, where 
xi∈ℝw×h×3, yi∈{0, 1} is the classification label of the medical image xi. 
By applying SAM-IE to each medical image in the training set, a new 
enhanced training set is generated {(x1

IE, y1), (x2
IE, y2), …, (xn

IE, yn)}, 
where xi

IE∈ℝw×h×3 is the enhanced version of the medical image xi. For 
the training set that was not enhanced by SAM-IE, this paper employs a 
common medical image classification model M (e.g., ResNet50 and Swin 
Transformer) to learn from it. The parameters of M are optimized 
through the following learning objectives: 

∑n

i=1
loss(M(xi), yi ) (1) 

As for the images enhanced by SAM-IE, this paper trains the classi
fication model M in the same way as before enhancement. However, 
considering that a model trained in this manner only recognizes the 
enhanced images and loses the ability to distinguish original images, this 
paper incorporates both original and enhanced images into the classi
fication experiments. In other words, the new learning objective is to 
minimize the following target based on the parameters of M: 

Fig. 1. The flowchart of the medical image classification with SAM-based Image Enhancement (SAM-IE). The terms ‘low-grade’ and ‘high-grade’ can refer to benign 
and malignant, respectively, or to different degrees of disease severity. 
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∑n

i=1
λloss(M(xi), yi )+φloss

(
M
(
xIE

i

)
, yi

)
(2)  

where λ and φ control the importance of training loss for original and 
enhanced images. When λ = 1 and φ = 0, the objective function in Eq. (2) 
simplifies to Eq. (1). In this paper, both λ and φ are set to 1, considering 
the importance of original and enhanced images to be of equal weight. 
Cross-entropy loss is employed to construct the loss functions in Eq. (1) 
and Eq. (2). 

Considering that in real clinical scenarios, doctors need to classify 
and identify original images, all test set images in this experiment are 
unenhanced images. The model testing can be expressed as: 

ŷ = f (M(x) ) (3)  

where f is an output activation function (e.g., a sigmoid function, or a 
softmax function). 

3.3. Classification model performance evaluation with SAM-IE 

In this medical image enhancement and classification comparative 
experiment, we utilize the ResNet50 model and Swin Transformer model 
as the cornerstone of our methodology, given their effectiveness in 
medical image classification tasks and handling complex visual data. 
Firstly, we curated a comprehensive dataset comprising medical images 
related to four different disease classification tasks across various image 
modalities, ensuring accurate labeling and annotation. Subsequently, 
the dataset is partitioned into training and testing subsets to facilitate 
model evaluation. Next, we preprocess the images by resizing them to 
standard dimensions and applying normalization techniques to ensure 
dataset consistency. Furthermore, data augmentation techniques such as 
rotation and flipping are employed to enhance dataset robustness. For 
model architecture, we load pre-trained ResNet50 model and Swin 
Transformer model, leveraging their learned features to expedite 
training and enhance performance. During training, we fine-tune the 
two classification models on the medical image dataset, adjusting the 
final fully connected layers to accommodate the specific classification 
tasks. We monitor model performance using accuracy and F1 score 
metrics. Finally, we evaluate the model’s generalization ability by 
assessing its performance on the test dataset and compare the classifi
cation results of various medical images before and after SAM-IE 
enhancement. 

4. Experiments 

4.1. Datasets 

In order to demonstrate the effectiveness of SAM-IE in improving the 
medical image classification performance, this paper conducted exper
iments on four publicly available datasets: breast ultrasound image 
(BUSI) dataset (Al-Dhabyani, Gomaa, Khaled, & Fahmy, 2020), Massa
chusetts General Hospital (MGH) breast dataset (Dong et al., 2014), 
Human Against Machine with 10,000 training images (HAM10000) 
dataset (Philipp Tschandl, Rosendahl, & Kittler, 2018), and Fundus 
Multi-disease dataset (Pachade et al., 2021). 

The BUSI dataset is a commonly used ultrasound dataset for breast 
tumors collected in 2018. The number of patients was 600 women. The 
dataset consists of 780 images with an average image size of 500 × 500 
pixels. The image is in PNG format. The images were classified as 
normal, benign or malignant. In this paper, benign and malignant im
ages were selected to be included in the classification experiment. The 
MGH Breast dataset is a binary classification pathology image dataset 
approved by the Partners Human Research Committee (Partners IRB). In 
this study, 233 images of ductal carcinoma in situ (DCIS) and 110 images 
of usual ductal hyperplasia (UDH) from MGH are included. The 
HAM10000 dataset contains a large number of multi-source 

dermatoscopic images of common pigmented skin lesions (Philipp 
Tschandl et al., 2018). The HAM10000 dataset is a multi-class dataset, 
and this paper selected melanoma (MEL) and benign keratosis (BKL) for 
classification experiments. MEL is a malignant neoplasm derived from 
melanocytes that may appear in different variants. If excised in an early 
stage it can be cured by simple surgical excision. Melanomas can be 
invasive or noninvasive (in situ) (Schiffner et al., 2000; P. Tschandl, 
Rosendahl, & Kittler, 2015). BKL is a generic class that includes sebor
rheic keratoses, solar lentigo and lichen-planus like keratoses (Zaballos 
et al., 2010). The Fundus Multi-disease is a fundus images dataset con
sisting of 3200 images along with the expert annotations divided into 
two categories: normal and abnormal. The detailed structure of the 
datasets is shown in Table 1. 

4.2. Implementation details and evaluation metrics 

We implement all models using the PyTorch framework on Ubuntu 
20.04 system, which is equipped with an Intel(R) Xeon(R) Platinum 
8269CY CPU @ 2.50 GHz, alongside the NVIDIA GeForce RTX 3090 24 
GB. 

This paper selects the ResNet50 and Swin Transformer as the clas
sification models for medical image classification. For ResNet50, the 
initial learning rate is set to 1 × 10-3, and the batch size is set to 80. 
Experiments are conducted on the four datasets both before and after 
SAM-IE, and the classification performance is compared. As for the Swin 
Transformer, the initial learning rate is set to 1 × 10-4, and the batch size 
is set to 48. Similarly, experiments are conducted on the four datasets 
before and after SAM-IE, and the classification performance is 
compared. 

The classification performance before and after SAM-IE with 
different classification methods is evaluated using commonly used 
metrics in medical image classification: the area under the receiver 
operating characteristic curve (AUC), accuracy, precision, sensitivity, 
specificity, Youden’s index (YI) and F1 score. Additionally, to highlight 
the differences in classification performance before and after SAM-IE, 
this paper employs the Delong test to examine the differences in AUC 
values between the results before and after SAM enhancement. 

5. Results 

With the support of SAM-IE, this study accomplished image 
enhancement for the BUSI, MGH Breast, HAM10000, and Fundus Multi- 
disease datasets, as depicted in Fig. 2. The initial row exhibits examples 
of unaltered images from the four datasets. The second and third rows 
showcase the binary masks and contour masks generated by SAM for 
each example. The enhanced images by SAM-IE are presented in the last 
row of Fig. 2. To highlight the effectiveness of SAM-IE on medical image 
classification models, this paper compares the classification perfor
mance on two networks (ResNet50 and Swin Transformer) before and 
after using SAM-IE. Moreover, we have also supplemented the classifi
cation performance of the four datasets used in this paper on seven other 
common classification models, including DenseNet121, DenseNet161, 
DenseNet169, ResNet18, ResNet34, ResNeXt50_32 × 4D, and 

Table 1 
Statistical description of the BUSI, MGH Breast, HAM10000, and Fundus Multi- 
disease datasets.  

Dataset Label Overall Training Testing 

BUSI Benign 437 350 87 
Malignant 210 168 42 

MGH Breast UDH 110 88 22 
DCIS 233 186 47 

HAM10000 MEL 1284 1113 171 
BKL 1316 1099 217 

Fundus Multi-disease Normal 669 535 134 
Abnormal 2531 2025 506  
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ResNeXt101_32 × 8D. The classification results on the four datasets are 
shown in Table 2 and Table 3. Furthermore, to visually illustrate the 
differences in classification results between with and without SAM-IE for 
each set of experiments, receiver operating characteristic (ROC) curves 
were plotted for each set of results, as depicted in Fig. 3. 

As shown in Fig. 4, we use Grad-CAM++ to generate class activation 
heatmaps of the test set images based on ResNet50 for visualizing the 
contribution distribution of different regions in the input images to the 
predicted outputs. In the heatmaps, areas with deeper red colors indicate 
higher values, indicating that the corresponding regions have higher 
response and contribution to the network. Thus, we can compare the 
differences in contribution distribution in medical images before and 
after using SAM-IE in the classification network through the heatmaps. 

5.1. Breast tumor classification on BUSI dataset 

Fig. 2a and Fig. 2b display ultrasound images of benign and malig
nant breast tumors, showcasing the image enhancement processes with 
SAM-IE. The SAM-IE enhancement method effectively highlights tumor 

regions and boundaries in the ultrasound images. The classification 
experiments were conducted using the ResNet50 and the Swin Trans
former models with and without SAM-IE. From Table 2, it can be seen 
that the classification results of the BUSI images enhanced by SAM-IE on 
both the ResNet50 and Swin Transformer models have shown significant 
improvements over the original images. All classification indices 
demonstrate noteworthy improvement. Furthermore, the classification 
results of the enhanced BUSI images on the ResNet50 model are superior 
to those on the Swin Transformer model. Compared to the classification 
results of other models, the enhanced BUSI images still demonstrate 
better performance on the ResNet50 model. 

ROC curves with and without SAM-IE for both ResNet50 and Swin 
Transformer models are depicted in Fig. 3a. For the ResNet50 model, the 
AUC increased from 0.943 to 0.981 with SAM-IE enhancement (Delong 
test: Z = -2.59, p < 0.05). For the Swin Transformer model, the AUC 
increased from 0.927 to 0.975 with SAM-IE enhancement (Delong test: 
Z = -2.13, p < 0.05). From Fig. 4, it can be seen that after enhancement 
by SAM-IE, the tumor regions in the BUSI images contribute more to the 
ResNet50 classification network, aiding in the accurate determination of 

Fig. 2. Illustration of image enhancement with SAM-based Image Enhancement (SAM-IE). Two typical examples from each dataset were selected.  

Table 2 
Classification results with our proposed SAM-IE on the BUSI and MGH Breast datasets based on ResNet50 and Swin Transformer (bottom two rows for each dataset), 
compared with results of classic classification networks without SAM-IE including the DenseNet121, DenseNet161, DenseNet169, ResNet18, ResNet34, ResNet50, 
ResNeXt50_32 × 4D, ResNeXt101_32 × 8D, and Swin Transformer.  

Dataset Model AUC Accuracy Precision Sensitivity Specificity YI F1 score 

BUSI DenseNet121  0.925  0.853  0.717  0.905  0.828  0.732  0.800 
DenseNet161  0.919  0.868  0.755  0.881  0.862  0.743  0.813 
DenseNet169  0.898  0.868  0.755  0.881  0.862  0.743  0.813 
ResNet18  0.915  0.892  0.850  0.810  0.931  0.741  0.829 
ResNet34  0.910  0.884  0.787  0.881  0.885  0.766  0.832 
ResNet50  0.943  0.884  0.776  0.905  0.874  0.778  0.835 
ResNeXt50_32 × 4D  0.939  0.923  0.848  0.929  0.920  0.848  0.886 
ResNeXt101_32 × 8D  0.952  0.930  0.902  0.881  0.954  0.835  0.892 
Swin Transformer  0.927  0.876  0.771  0.881  0.874  0.755  0.822 
ResNet50 w/ SAM-IE  0.981  0.946  0.889  0.952  0.943  0.895  0.920 
Swin Transformer w/ SAM-IE  0.975  0.961  0.974  0.905  0.989  0.893  0.938 

MGH Breast DenseNet121  0.860  0.783  0.971  0.702  0.955  0.657  0.815 
DenseNet161  0.894  0.826  1.000  0.745  1.000  0.745  0.854 
DenseNet169  0.902  0.855  1.000  0.787  1.000  0.787  0.881 
ResNet18  0.873  0.812  0.886  0.830  0.773  0.603  0.857 
ResNet34  0.887  0.841  0.929  0.830  0.864  0.693  0.876 
ResNet50  0.883  0.870  1.000  0.809  1.000  0.809  0.894 
ResNeXt50_32 × 4D  0.906  0.913  0.902  0.979  0.773  0.752  0.939 
ResNeXt101_32 × 8D  0.912  0.826  0.973  0.766  0.955  0.721  0.857 
Swin Transformer  0.893  0.826  0.973  0.766  0.955  0.721  0.857 
ResNet50 w/SAM-IE  0.981  0.928  0.977  0.915  0.955  0.869  0.945 
Swin Transformer w/ SAM-IE  0.980  0.942  0.939  0.979  0.864  0.842  0.958  
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the benignity or malignancy of breast tumors. In contrast, with the 
original images, the classification network often overly focuses on arti
facts in the ultrasound images, which can easily lead to diagnostic 
errors. 

5.2. Breast disease classification on MGH Breast dataset 

Fig. 2c and Fig. 2d respectively depict two types of pathological 
images, UDH and DCIS, along with their enhancement processes with 
SAM-IE. The SAM-IE enhancement method emphasizes the character
istics of cell regions and boundaries in the pathological images. Using 
the ResNet50 model and Swin Transformer model, this study conducts 
classification experiments with and without SAM-IE. Table 2 shows that 
compared with the original images, the MGH Breast images enhanced by 
SAM-IE achieved better AUC and accuracy on both the ResNet50 and 
Swin Transformer models. The results of SAM-IE also showed more 
balanced sensitivity and specificity, with significant improvements in YI 
and F1 scores. Moreover, the classification results of the MGH Breast 
enhanced images on the ResNet50 model were superior to those on the 
Swin Transformer model. Compared with the classification results of 
other models, the MGH Breast enhanced images still exhibited superior 
performance on the ResNet50 model. 

ROC curves with and without SAM-IE on the ResNet50 and Swin 
Transformer models are illustrated in Fig. 3b. Incorporating SAM-IE 
model led to a significant improvement in AUC for both the ResNet50 
and Swin Transformer models. Specifically, for the ResNet50 model, the 
AUC increased from 0.883 to 0.981 (Delong test: Z = -2.44, p < 0.05). 
For the Swin Transformer model, the AUC increased from 0.893 to 0.980 
with SAM-IE enhancement (Delong test: Z = -2.33, p < 0.05). From 
Fig. 4, it is evident that after enhancement by SAM-IE, the effective 
cellular areas in the MGH Breast images contribute more significantly to 
the ResNet50 classification network. In contrast, with the original im
ages, the classification network is unable to adequately focus on the 
pathological areas that aid in diagnosis. 

5.3. Skin lesions classification on HAM10000 dataset 

Fig. 2e and Fig. 2f illustrate the dermatoscopic images of MEL and 
BKL in the HAM10000 dataset alongside their enhancement processes 
with SAM-IE. The SAM-IE model implemented in this study notably 

accentuates the skin lesion area and sharpens the contour between the 
lesion tissue and the surrounding tissue in the dermatoscopic images. 
Using both ResNet50 and Swin Transformer models, this study con
ducted classification experiments with and without SAM-IE. Table 3 
shows that compared to the original images, the images enhanced by 
SAM-IE demonstrate superior classification performance on both the 
ResNet50 and Swin Transformer models, with significant improvements 
in accuracy, precision, and specificity. The enhancement effect of SAM- 
IE significantly improves the classification performance of BKL images. 
Moreover, the classification results of the HAM10000 enhanced images 
on the Swin Transformer model are superior to those on the ResNet50 
model. Compared to the classification results of other models, the 
HAM10000 enhanced images still exhibit superior performance on the 
Swin Transformer model. 

The ROC curves, depicted in Fig. 3c, further highlight the positive 
impact of enhancement with SAM-IE on classification performance for 
both models. For the ResNet50 model, the AUC increased from 0.906 to 
0.931 with SAM-IE model (Delong test: Z = -2.13, p < 0.05). For the 
Swin Transformer model, the AUC witnessed an improvement from 
0.902 to 0.937 with SAM-IE model (Delong test: Z = -2.65, p < 0.05). 
From Fig. 4, it can be seen that after enhancement with SAM-IE, the skin 
cancer lesion areas in the HAM10000 images contribute more signifi
cantly to the ResNet50 classification network, aiding in the accurate 
determination of the cancer type. In contrast, for the original images, the 
classification network is unable to effectively focus on the lesion areas. 

5.4. Fundus state classification on fundus Multi-disease dataset 

Fig. 2g and Fig. 2h display fundus images under normal and 
abnormal conditions, respectively, along with the enhancement process 
by SAM-IE model. In the binary mask, it is evident that SAM enhances 
the visual field of the fundus image. However, the effectiveness of SAM- 
IE model in distinguishing optic disc, optic cup, and background areas is 
not prominent in this context. Conversely, the contour mask illustrates a 
clearer delineation of the optic disc boundary, but SAM-IE still exhibits 
limitations in identifying the optic cup. 

Employing both ResNet50 and Swin Transformer models, this paper 
conducts classification experiments with and without SAM-IE model. 
Table 3 reveals that, in comparison to the original image, enhanced 
results by SAM-IE on the ResNet50 model exhibit slight improvements, 

Table 3 
Classification results with our proposed SAM-IE on the HAM10000 and Fundus Multi-disease datasets based on ResNet50 and Swin Transformer (bottom two rows for 
each dataset), compared with results of classic classification networks without SAM-IE including the DenseNet121, DenseNet161, DenseNet169, ResNet18, ResNet34, 
ResNet50, ResNeXt50_32 × 4D, ResNeXt101_32 × 8D, and Swin Transformer.  

Dataset Model AUC Accuracy Precision Sensitivity Specificity YI F1 score 

HAM10000 DenseNet121  0.852  0.778  0.703  0.860  0.714  0.574  0.774 
DenseNet161  0.847  0.802  0.783  0.760  0.834  0.594  0.772 
DenseNet169  0.841  0.789  0.731  0.825  0.760  0.585  0.775 
ResNet18  0.908  0.851  0.805  0.871  0.834  0.705  0.837 
ResNet34  0.862  0.804  0.741  0.854  0.765  0.619  0.794 
ResNet50  0.906  0.851  0.816  0.854  0.848  0.702  0.834 
ResNeXt50_32 × 4D  0.926  0.879  0.883  0.836  0.912  0.749  0.859 
ResNeXt101_32 × 8D  0.912  0.845  0.776  0.912  0.793  0.705  0.839 
Swin Transformer  0.902  0.820  0.742  0.906  0.751  0.658  0.816 
ResNet50 w/ SAM-IE  0.931  0.879  0.869  0.854  0.899  0.752  0.861 
Swin Transformer w/ SAM-IE  0.937  0.869  0.797  0.942  0.811  0.753  0.863 

Fundus Multi-disease DenseNet121  0.934  0.831  0.995  0.791  0.985  0.776  0.881 
DenseNet161  0.932  0.838  0.981  0.810  0.940  0.751  0.887 
DenseNet169  0.933  0.842  0.981  0.816  0.940  0.757  0.891 
ResNet18  0.942  0.888  0.982  0.874  0.940  0.814  0.925 
ResNet34  0.951  0.863  0.998  0.828  0.993  0.821  0.905 
ResNet50  0.946  0.883  0.970  0.879  0.896  0.775  0.922 
ResNeXt50_32 × 4D  0.948  0.855  0.988  0.826  0.963  0.789  0.900 
ResNeXt101_32 × 8D  0.946  0.870  0.980  0.854  0.933  0.787  0.912 
Swin Transformer  0.946  0.880  0.976  0.870  0.918  0.788  0.920 
ResNet50 w/SAM-IE  0.955  0.889  0.968  0.889  0.888  0.777  0.927 
Swin Transformer w/ SAM-IE  0.959  0.903  0.985  0.891  0.948  0.839  0.936  
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Fig. 3. Receiver operating characteristic (ROC) curves for classification with and without SAM-IE based on ResNet50 (left) and Swin Transformer (right) models on 
the BUSI (a), MGH Breast (b), HAM10000 (c), and Fundus Multi-disease (d) datasets. 

C. Wang et al.                                                                                                                                                                                                                                   



Expert Systems With Applications 249 (2024) 123795

9

with significant enhancements in sensitivity. These results indicate that 
fundus image enhancement by SAM-IE can improve the classification 
performance of abnormal images to some extent. For the Swin Trans
former model, compared to the original image, enhanced fundus images 
achieve superior classification results, with notable improvements in 
various classification indicators. Additionally, the classification results 
of enhanced fundus images are superior on the Swin Transformer model 
compared to the ResNet50 model. In comparison to the results of other 
models, the classification outcomes of enhanced fundus images still 
demonstrate superiority on the Swin Transformer model. 

The ROC curves, depicted in Fig. 3d, provide a visual representation 
of the impact of fundus image enhancement by SAM-IE on classification 
performance for both ResNet50 and Swin Transformer models. For the 
ResNet50 model, the AUC witnessed a marginal increase from 0.946 to 
0.955 with SAM-IE model (Delong test: Z = -1.50, p = 0.13). Meanwhile, 
for the Swin Transformer model, the AUC increased from 0.946 to 0.959 
with SAM-IE model (Delong test: Z = -2.10, p < 0.05). From Fig. 4, it can 
be observed that after SAM-IE enhancement, the pathological regions in 
the fundus images contribute more to the ResNet50 classification 
network, aiding in accurately determining the abnormalities in the 
fundus images. In contrast, the classification network’s ability to focus 
on the pathological regions is poorer in the original images. 

6. Discussion 

In recent years, the advent and rapid advancement of SAM have 
yielded commendable achievements in image segmentation, particu
larly in natural image segmentation, where SAM can achieve more ac
curate results when guided by prompts. However, due to the substantial 
differences between medical and natural images, SAM’s segmentation 
performance in medical images falls short of satisfactory levels. The 
effective application of SAM in medical image processing and disease 
diagnosis remains extensive attention. During exploration, it was 
observed that while SAM may not precisely segment lesion or tissue 
regions, it could output the most probable region of interest in an image 
by limiting the confidence level of the segmentation region. In clinical 
diagnosis, radiologists typically focus on morphological and structural 
changes in lesion or tissue areas and their surroundings. Hence, in this 

study, SAM is employed to extract regions of interest with certain 
probabilities in medical images. These regions and their boundaries are 
then highlighted and emphasized in the original image to generate 
enhanced images. To assess the potential impact of enhanced images by 
SAM-IE on disease diagnosis, comparative experiments are designed 
with and without SAM-IE, using the ResNet50 model and Swin Trans
former model, respectively. 

According to the classification results, all performance metrics for 
both the ResNet50 and Swin Transformer models, using the BUSI and 
HAM10000 dataset after enhancement by SAM-IE, have displayed sig
nificant improvements, with discernible statistical difference in the AUC 
(Table 2, Table 3, Fig. 3a and Fig. 3c). By observing Fig. 2, we can find 
that the images in these datasets contain a single target region, and 
enhancement operation with SAM-IE accurately identifies and locates 
the region of interest within the image. Furthermore, considering the 
sizable lesion area and distinct lesion morphology in these images, the 
enhancement with SAM-IE demonstrates advantageous in the diagnostic 
process. For the enhanced images of MGH Breast dataset, it’s noticeable 
that cells in the images are not entirely recognized. However, when 
comparing Fig. 2c and Fig. 2d, there are fewer unrecognized cells in 
Fig. 2d, indicating a better enhancement effect on DCIS images. 
Consequently, the sensitivity in the classification results with SAM-IE on 
the MGH Breast dataset surpasses that without SAM-IE (Table 2). Due to 
the inherent characteristics of fundus images, the SAM-IE can enhance 
the entire circular visual field of fundus images without specific 
prompts. Although the area and boundaries of optic disc and optic cup 
are highlighted to some extent, the contour between the optic cup and 
the surrounding area remains unclear in the enhanced image (Fig. 2). 
The classification results of SAM-IE enhanced fundus images demon
strated improvement on both ResNet50 model and Swin Transformer 
model compared to those without SAM-IE enhancement. However, this 
improvement effect is not significant (Table 3). On the other side, the 
comparison of ROC curves on the ResNet50 model in Fig. 3d indicate no 
significant difference, which also shows the improvement effect is weak. 
Moreover, it can be observed that compared to the experimental results 
of other 7 classification models without SAM-IE, the classification results 
after using SAM-IE image enhancement in this paper still exhibit supe
riority (Table 2, Table 3). From Fig. 4, it can be seen that after SAM-IE 

Fig. 4. The class activation heatmaps generated from the test set images based on the ResNet50 model. Two typical examples from each dataset were selected. The 
heatmaps on the left show the results without SAM-IE, while the heatmaps on the right show the results with SAM-IE. 
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enhancement, the pathological regions in the images can contribute 
more to the classification network, thereby improving the accuracy of 
classification. In contrast, for the original images, the classification 
network tends to overly focus on the distracting factors in the images, 
leading to diagnostic errors. 

Based on the aforementioned experimental results, it is evident that 
the SAM-IE model effectively accentuates lesions or tissue areas in the 
images, consequently improving the classification accuracy of medical 
image. Notably, the SAM-IE model demonstrates superior effects on 
images featuring a single object, large area, and clear boundaries. 
However, it is susceptible to interference from additional information in 
the image, compromising the enhancement of the target region. 

To further improve performance of SAM-IE in medical image clas
sification, several feasible strategies can be considered. Firstly, the 
incorporation of a prompt module into the SAM-IE could enhance the 
accuracy of recognizing the enhanced region in the images. Secondly, 
the impact of SAM-IE can be assessed using various medical image 
classification models to bolster the reliability of the SAM-IE model. 
Additionally, a comprehensive evaluation of the SAM-IE model’s impact 
on medical image classification could be conducted through a collabo
rative approach that involves both radiologists and classification 
models. 

7. Conclusions 

The classification results across the four public datasets demonstrate 
that SAM-IE contributes to an improvement in the performance of 
medical image classification models. Moreover, the SAM-IE model 
proposed in this study exhibits particular suitability for images charac
terized by a large area, a small number of target areas, and significant 
morphological differences from the surrounding regions. By accentu
ating the target region and its contour in the image, the SAM-IE model 
elevates the classification performance of the ResNet50 and Swin 
Transformer models. This verification process not only emphasizes the 
efficacy of SAM-IE for disease diagnosis on various imaging modalities 
but also expands the application scope of SAM in medical image 
analysis. 
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