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ABSTRACT

The Segment Anything Model (SAM) is a large-scale model developed for general segmentation tasks in computer
vision. Trained on a substantial dataset, SAM can accurately segment various objects in natural scene images.
However, due to significant semantic differences between medical and natural images, directly applying SAM to
medical image segmentation does not yield optimal results. Therefore, effectively utilizing such a comprehensive
foundation model for medical image analysis is an emerging research topic. Despite SAM’s current suboptimal
performance in medical image segmentation, it shows preliminary recognition and localization of tissues and
lesions that radiologists focus on in medical images. This implies that SAM’s generated masks, features, and
stability scores hold potential value for medical image diagnosis. Therefore, based on the model output of SAM,
this study introduces a SAM-based Image Enhancement (SAM-IE) method for disease diagnosis. Targeting pop-
ular medical image classification models (e.g., ResNet50 and Swin Transformer), SAM-IE is proposed to enhance
image inputs by combining the binary mask and contour mask generated by SAM with the original image to
create attention maps, thereby improving diagnostic performance. To validate the effectiveness of SAM-IE for
diagnosis, experiments were conducted on four medical image datasets for eight classification tasks. The results
demonstrate the effectiveness of our proposed SAM-IE model, showcasing SAM’s potential value in medical

image classification. This study provides a feasible approach for integrating SAM into disease diagnosis.

1. Introduction

The Segment Anything Model (SAM) emerges as an innovative
foundational model for image segmentation in 2023, leveraging the
vision transformer architecture (Dosovitskiy et al., 2021; Kirillov et al.,
2023). The SAM comprises a vision transformer-based image encoder, a
prompt encoder, and a lightweight mask decoder. The image features
extracted by SAM’s encoder are used by the mask decoder to generate
segmentation results, incorporating the embedded prompt information.
Trained on an extensive dataset comprising 11 million images with 1
billion masks, SAM stands out for its notable zero-shot segmentation
performance on previously unseen datasets and tasks (Huang et al.,
2023; Mazurowski et al., 2023). One of SAM’s key strengths lies in its
versatility, demonstrating efficacy across a diverse range of segmenta-
tion tasks.

While SAM demonstrates impressive performance in natural image

segmentation, studies indicate that it may face limitations in segmen-
tation tasks requiring domain-specific knowledge, as observed in certain
medical image segmentation scenarios (Mazurowski et al., 2023; Zhang
& Jiao, 2023). Deng et al. (2023) assessed SAM’s performance in tumor
segmentation, non-tumor tissue segmentation, and cell nuclei segmen-
tation. Even with 20 prompts on each image, SAM failed to achieve
satisfactory performance for dense instance object segmentation. Hu,
Xia, Ju, and Li (2023) performed experiments on multi-phase liver
tumor segmentation using contrast-enhanced computed tomography
volumes. The results indicated a significant gap between SAM with a
limited number of prompt points and the classic U-Net (Ronneberger,
Fischer, & Brox, 2015). Zhou et al. (2023) assessed the performance of
SAM in segmenting polyps from colonoscopy images across five
benchmark datasets in an unprompted setting. The experimental results
revealed SAM’s lower performance compared to state-of-the-art
methods.
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Many research findings highlight limitations in the segmentation
capability of SAM when directly applied to medical image, revealing
significant discrepancies across various datasets and tasks. While SAM
demonstrates exceptional performance in specific objects and modal-
ities, it falls short and may even fail in more challenging scenarios,
particularly when dealing with weak boundaries, low contrast, and
small, irregular shapes (G.-P. Ji et al., 2023; W. Ji et al., 2023). The
challenges faced by SAM in medical image segmentation are attributed
to the intricate modalities, fine anatomical structures, uncertain and
complex object boundaries, and a wide range of object scales (Huang
et al., 2023). Furthermore, being pre-trained on the SA-1B dataset,
which contains 11 million natural images, SAM’s approach of deter-
mining boundaries based on intensity variance (G.-P. Ji et al., 2023; Ma
et al., 2023; Zhang & Jiao, 2023), effective in natural images, proves
inadequate for medical images due to the crucial role of anatomical or
pathological structure analysis. Additionally, SAM struggles to associate
segmentation regions with meaningful semantic classes, hindering its
application in computer-aided diagnosis.

In recent years, many studies have been dedicated to improving SAM
to enhance its applicability in medical image analysis. Due to the less-
than-ideal results of directly applying SAM to medical image segmen-
tation, several studies have focused on how to fine-tune SAM for medical
image analysis to enhance its reliability. Hu, Li, and Yang (2023) and Li,
Hu, and Yang (2023) conducted fine-tuning experiments on SAM for
skin cancer and polyp segmentation tasks, respectively, achieving
promising segmentation results. While fine-tuning SAM on medical
datasets holds the potential to improve its segmentation performance, its
efficacy heavily relies on manually provided prompt information and is
sensitive to incorrect prompts. In addressing this issue, Gao et al. (Gao,
Xia, Hu, & Gao, 2023) proposed the Decoupled Segment Anything
Model, aiming to minimize performance degradation caused by erro-
neous prompts. These studies attempt to restructure SAM to adapt it for
medical image segmentation tasks and enhance the level of segmenta-
tion in medical images.

Due to the model being trained on a large number of natural images,
SAM has significant limitations in the field of medical image segmen-
tation. Currently, research based on SAM in the field of medical image
analysis mostly focuses on improving the segmentation performance on
medical images. However, existing studies indicate that it appears to be
difficult for SAM to achieve high-quality segmentation of medical im-
ages, whether through model fine-tuning or adding prompts. Although
SAM cannot accurately segment medical images without prompting,
SAM can still distinguish obvious tissues and pathological structures
according to pixel changes in the images. Medical images carry a sub-
stantial amount of information, primarily associated with high image
resolution and pixel depth, which can exceed the visual discernment
capabilities of the human eye in distinguishing among numerous gray
levels (Ortiz, Gorriz, Ramirez, Salas-Gonzalez, & Llamas-Elvira, 2013).
Enhancing the appearance and visual quality of medical images is
crucial to provide physicians with valuable information that may not be
immediately evident in the original image. This enhancement assists in
anomaly detection, diagnosis, and treatment. In this context, the image
enhancement (IE) techniques aim to achieve specific improvements in
the quality of a given medical image. The enhanced image is expected to
better reveal certain features compared to their original appearance (de
Araujo, Constantinou, & Tavares, 2014). Therefore, in this paper we
propose a new IE method based on SAM (SAM-IE), aiming at improving
the diagnostic accuracy of medical image classification models. Our aim
is to explore SAM’s potential value in medical image analysis from a
different perspective. SAM-generated masks and stability scores,
without additional prompts, prove useful for medical image classifica-
tion and diagnosis. Thus, we introduce SAM-IE to enhance inputs for
medical image classification models.

A critical difference between SAM-IE and the previous enhancement
methods (Dinh & Giang, 2022; Rundo et al., 2019) is that the traditional
IE methods often work at a low level, e.g., de-blurring and noise
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reduction, and the purpose of enhancement is for image reconstruction
and recovery. In contrast, SAM-IE aims to add high-level structures to
original images, providing better semantics for the subsequent medical
image classification models. The SAM-IE enhances images by adding
semantic structures from a segmentation foundation model. Moreover,
the SAM-IE opens up new research ideas for SAM in the field of medical
image analysis and further explores the application values of SAM. On
the other hand, the image enhancement method proposed in this study
does not involve complex modifications to the SAM or excessive prior
prompts, making it convenient for radiologists to directly use SAM in the
disease diagnosis process.

In order to test the effect of SAM-IE integrated into medical image
classification models for disease diagnosis, this paper selects two clas-
sification models commonly used in medical image classification tasks,
and carries out classification experiments on four medical image data-
sets respectively. The effect of SAM-IE on medical image classification
task was analyzed by comparing the classification results before and
after SAM-IE was used on classification models. Our main contributions
can be summarized as follows: (1) We propose an image enhancement
method based on the Segment Anything Model. (2) The SAM-IE method
we propose can enhance the performance of classification models. (3)
The SAM-IE demonstrates effectiveness for disease diagnosis across
various imaging modalities. (4) Our method extends the scope of SAM to
medical image diagnosis. The second chapter reviews the research on
application of SAM in medical image analysis. In the third chapter of this
paper, the SAM-IE methods and model training and deployment pro-
cesses are explained in detail. The datasets, the details of the experiment
and the evaluation indicators are described in chapter four. The fifth
part of the paper mainly analyzes the experimental results on four
datasets.

2. Related work
2.1. Optimization of SAM on medical images

The research shows that it is difficult to obtain satisfactory seg-
mentation effect by directly applying SAM to medical image segmen-
tation task. In order to make better use of SAM in the field of medical
image analysis, many researches focus on the transformation of SAM and
the integration of SAM with other methods. Among them, the method of
fine-tuning a small part of SAM parameters to obtain better medical
image segmentation has attracted more attention. Ma et al. (2023)
introduce MedSAM for universal image segmentation by curating a
diverse and comprehensive medical image dataset containing over
200,000 masks with 11 modalities and develop fine-tuning approach to
adapt SAM to medical image segmentation. The proposed MedSAM
further improves the performance of SAM in medical image segmenta-
tion. Wu et al. (2023) introduce Medical SAM Adapter to fine-tuning
pre-trained SAM with a parameter-efficient fine-tuning paradigm
using Adaption modules (Hu, 2021). Comprehensive experiments
demonstrate that by fine-tuning, Medical SAM Adapter can obtain
comparable performance compared with state-of-the-art methods.
Zhang and Liu (2023) apply low-rank-based (Hu, 2021) fine-tuning
strategy to SAM image encoder together with the prompt encoder and
mask decoder on labeled medical image segmentation datasets. By fine-
tuning on a multi-organ segmentation dataset, SAM can achieve highly
competitive segmentation performance compared with state-of-the-art
methods. Chai et al. (2023) combine an additional CNN as a comple-
mentary encoder along with the standard SAM architecture and only
focus on fine-tuning the additional CNN and SAM decoder to reduce the
resource utilization and training time of fine-tuning.

As simple and straight-forward approaches, these methods demon-
strate the effectiveness of fine-tuning SAM on domain-specific medical
datasets to achieve better segmentation performance. However, the use
of SAM for medical image segmentation still needs to provide additional
professional tips, and it is difficult to achieve fully automatic medical
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image segmentation. For the prompt mode, the final segmentation re-
sults are highly dependent on the prompt, and the model is still more
sensitive to error prompts. To issue this challenge, Gao et al. (2023)
propose the Decoupling Segment Anything Model, which can minimize
the performance degradation caused by wrong prompts while avoiding
training image encoder which requires higher GPU cost. Extensive ex-
periments demonstrate that the Decoupling Segment Anything Model
improves the robustness of fully automated segmentation in dealing
with distribution variations across different sites. Deng, et al. (2023)
propose to enhance SAM by employing multiple box prompts to estab-
lish pixel-level reliability through uncertainty estimation. By generating
different predictions using different multi-box prompts and estimating
the distribution of SAM predictions using Monte Carlo simulation with
prior distribution parameters, the model can estimate the variations by
aleatoric uncertainty and generate an uncertainty map to highlight
challenging areas for segmentation, which offers valuable guidance for
potential segmentation errors and support further clinical analysis.

Direct application of SAM trained on a large number of natural im-
ages to medical image segmentation often fails to achieve satisfactory
segmentation results. While methods for fine-tuning SAM can enhance
its performance to some extent in medical image segmentation, specific
domain expertise is still required for medical image segmentation tasks,
making fully automatic segmentation tasks difficult to achieve. Other
methods for improving SAM inevitably require higher GPU costs and
training dataset costs. Therefore, this paper proposes an image
enhancement method based on SAM. This method no longer blindly
pursues higher performance of SAM in medical image segmentation but
fully utilizes the masks and stability scores generated by SAM to enhance
medical images, aiding physicians in disease diagnosis. At the same
time, our method further expands the application scope of SAM in the
field of medical image diagnosis.

2.2. Usability extension of SAM on medical images

In contrast to natural images, medical images are typically stored in
specific formats like NII and DICOM. To facilitate SAM’s integration into
medical image analysis, Liu, Zhang, She, Kheradmand and Mehran
(2023) incorporated SAM into the 3D Slicer software (Fedorov et al.,
2012). This integration allows researchers to perform segmentation
tasks on medical images with minimal latency, and the segmentation
process, initiated by a prompt, automatically propagates to the subse-
quent slice once the segmentation for a particular slice is completed (Liu
et al., 2023; Zhang & Jiao, 2023).

To improve the performance of interactive image segmentation, Dai
et al. (2023) introduced SAMAug, an innovative visual point augmen-
tation technique designed for SAM. SAMAug creates augmented point
prompts to convey additional information about the user’s intent to
SAM. Starting with an initial point prompt, SAM generates an initial
mask, further processed by SAMAug to generate augmented point
prompts. Integrating these additional points enables SAM to produce
augmented segmentation masks, leading to enhanced segmentation
performance.

While SAM’s performance depends on input prompts, there is a
growing interest in achieving a fully automatic solution. Shaharabany,
Dahan, Giryes and Wolf (2023) introduced AutoSAM, incorporating the
training of an auxiliary prompt encoder to generate a surrogate prompt.
Unlike traditional prompt types in SAM, such as bounding boxes, points,
or masks, AutoSAM employs the image itself as input. With the assis-
tance of the auxiliary trained network, SAM transitions into a fully
automatic mode, eliminating the need for prompts and achieving state-
of-the-art results across various medical benchmarks without fine-
tuning.

Cui et al. (2023) presented an approach called all-in-SAM, designed
to leverage SAM without manual prompts. This framework specifically
exploits weak annotations and pre-trained SAM for fine-tuning, aiming
to minimize annotation costs and enhance SAM’s application through
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label-efficient fine-tuning. Additionally, Lei, Xu, Zhang, Kang and Zhang
(2023) proposed MedLSAM, introducing a localization process by
identifying six extreme points in three directions of 3D images for any
region of interest. Subsequently, the generated bounding box is utilized
by SAM for precise segmentation of the target anatomy, enabling
automatic segmentation.

Currently, the application of SAM in the field of medical image
analysis mostly focuses on image segmentation tasks. Therefore, the
segmentation performance of SAM on medical images limits further
utilization of SAM in medical image analysis. This paper proposes an
image enhancement method based on SAM, challenging the current -
view of SAM as only a segmentation tool and presenting a novel
approach for utilizing SAM as an image enhancement tool in medical
image diagnosis.

2.3. Medical image augmentation with SAM

Different from previous studies, which dedicate to improving the
medical image segmentation effect of SAM. Zhang, Zhou, Wang, Liang,
and Chen (2023) did not directly apply SAM for segmentation, but uti-
lized the segmentation masks generated by SAM to augment the original
input medical images. Their proposed SAMAug fuses the original image
with the segmented prior image and the boundary prior image generated
by the segmented prior image. The experimental results show that the
segmentation effect after input augmentation with SAMAug is better
than that without augmentation This study demonstrates that the SAM
may not be able to generate high-quality medical image segmentation,
but these generated masks and features still help boost the segmentation
model.

Research indicates that combining SAM’s output images with orig-
inal images to generate prior maps can be used to enhance network
inputs, thereby improving the performance of downstream medical
segmentation models. Inspired by this, this paper fully utilizes the masks
and stability scores outputted by SAM to design the SAM-IE image
enhancement model. The enhanced images can effectively highlight the
pathological regions in the original medical images and provide atten-
tion maps for medical image classification models, thereby enhancing
the classification performance of the models. The SAM-IE method pro-
posed in this paper demonstrates effectiveness in disease diagnosis
across multiple medical image modalities.

3. Methods

The pre-trained model of SAM currently does not achieve the same
level of segmentation performance in medical images as it does in nat-
ural images. However, SAM still excels in highlighting certain note-
worthy lesion areas or typical features in medical images. From this
perspective, SAM is expected to assist in disease diagnosis by enhancing
image for the classification model. In order to study the impact of SAM-
IE on the classification performance of medical images, this study uses
the common medical image classification models (e.g., ResNet50
(Kaiming, Xiangyu, Shaoqing, & Jian, 2016) and Swin Transformer (Liu
et al., 2021) to conduct classification experiments on the pre-enhanced
and post-enhanced images respectively, and analyzes and compares the
two groups of classification results, as shown in Fig. 1. In Section 3.1, we
describe the process of generating binary mask and contour mask by
SAM, and elaborates the process of IE by applying two key masks to
medical images. Section 3.2 will introduce the training details of the
medical image classification model using SAM-IE, and explain the model
testing methods. Section 3.3 will primarily detail the steps for evaluating
the performance of the classification networks with SAM-IE.

3.1. Image enhancement with SAM

Loading pre-trained SAM allows for the generation of segmentation
masks for medical images. Without adding any prior prompts, SAM is
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Fig. 1. The flowchart of the medical image classification with SAM-based Image Enhancement (SAM-IE). The terms ‘low-grade’ and ‘high-grade’ can refer to benign

and malignant, respectively, or to different degrees of disease severity.

capable of generating segmentation masks for all possible regions in a
medical image and stores them in a list. Moreover, in SAM segmentation
experiments, stability scores corresponding to each segmentation mask
are also outputted along with the segmentation masks. In this paper,
based on the characteristics of different medical images, segmentation
masks are filtered according to the stability scores. The stability scores of
the retained segmentation masks are mapped to grayscale values and
used to generate a binary mask, which is a grayscale image depicting the
corresponding regions. Additionally, this paper further extracts the edge
information from all the filtered segmentation masks to generate a
contour mask. In summary, for a given medical image, this paper com-
pletes the drawing of the medical image binary mask and contour mask
through the above process, as seen in Fig. 1.

After obtaining the binary mask and contour mask generated by
SAM, this study enhances the images by overlaying these two masks
with the original medical image. Many medical image segmentation
tasks can be simplified into three types of segmentation tasks, where the
first type corresponds to the background, the second type corresponds to
the region of interest (ROI), and the third type corresponds to the
boundary between ROI and background. Therefore, for three-channel
color images, we generate enhanced images by overlaying binary
masks and contour masks with a single channel of the original image.
Specifically, we first split the original medical image into R, G, and B
channels. Then, we overlay the contour mask onto the R channel.
Similarly, we overlay the binary mask onto the G channel. Finally, we
combine the newly generated R and G channels with the original B
channel to obtain the final enhanced image (Fig. 1). For medical images
where the original image is grayscale, we create a three-channel image
where the first channel consists of the grayscale original image, the

second channel consists of the overlay of the original grayscale image
with the binary mask, and the third channel consists of the overlay of the
original grayscale image with the contour mask. For each medical image
x in the training set, its enhanced version can be represented as x'F = IE
(Maskcontours Maskpinary X)-

3.2. Classification model training and testing with SAM-IE

The original training set {(x1, y1), (x2, ¥2), ..., (Xn, yn)}, where
x;,€R"P*3 y.c{0, 1} is the classification label of the medical image x;.
By applying SAM-IE to each medical image in the training set, a new
enhanced training set is generated {(xF, y1), F, y2), ..., O, yoi,
where xFeR"*"*3 js the enhanced version of the medical image x;. For
the training set that was not enhanced by SAM-IE, this paper employs a
common medical image classification model M (e.g., ResNet50 and Swin
Transformer) to learn from it. The parameters of M are optimized
through the following learning objectives:

Z loss(M(x;),y:) €D)
i1

As for the images enhanced by SAM-IE, this paper trains the classi-
fication model M in the same way as before enhancement. However,
considering that a model trained in this manner only recognizes the
enhanced images and loses the ability to distinguish original images, this
paper incorporates both original and enhanced images into the classi-
fication experiments. In other words, the new learning objective is to
minimize the following target based on the parameters of M:
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iﬂloss(M(xi)Ji )+ ploss(M(xF),y;) 2
p

where 1 and ¢ control the importance of training loss for original and
enhanced images. When 1 = 1 and ¢ = 0, the objective function in Eq. (2)
simplifies to Eq. (1). In this paper, both 1 and ¢ are set to 1, considering
the importance of original and enhanced images to be of equal weight.
Cross-entropy loss is employed to construct the loss functions in Eq. (1)
and Eq. (2).

Considering that in real clinical scenarios, doctors need to classify
and identify original images, all test set images in this experiment are
unenhanced images. The model testing can be expressed as:

y=fM(x)) 3)

where f is an output activation function (e.g., a sigmoid function, or a
softmax function).

3.3. Classification model performance evaluation with SAM-IE

In this medical image enhancement and classification comparative
experiment, we utilize the ResNet50 model and Swin Transformer model
as the cornerstone of our methodology, given their effectiveness in
medical image classification tasks and handling complex visual data.
Firstly, we curated a comprehensive dataset comprising medical images
related to four different disease classification tasks across various image
modalities, ensuring accurate labeling and annotation. Subsequently,
the dataset is partitioned into training and testing subsets to facilitate
model evaluation. Next, we preprocess the images by resizing them to
standard dimensions and applying normalization techniques to ensure
dataset consistency. Furthermore, data augmentation techniques such as
rotation and flipping are employed to enhance dataset robustness. For
model architecture, we load pre-trained ResNet50 model and Swin
Transformer model, leveraging their learned features to expedite
training and enhance performance. During training, we fine-tune the
two classification models on the medical image dataset, adjusting the
final fully connected layers to accommodate the specific classification
tasks. We monitor model performance using accuracy and F1 score
metrics. Finally, we evaluate the model’s generalization ability by
assessing its performance on the test dataset and compare the classifi-
cation results of various medical images before and after SAM-IE
enhancement.

4. Experiments
4.1. Datasets

In order to demonstrate the effectiveness of SAM-IE in improving the
medical image classification performance, this paper conducted exper-
iments on four publicly available datasets: breast ultrasound image
(BUSI) dataset (Al-Dhabyani, Gomaa, Khaled, & Fahmy, 2020), Massa-
chusetts General Hospital (MGH) breast dataset (Dong et al., 2014),
Human Against Machine with 10,000 training images (HAM10000)
dataset (Philipp Tschandl, Rosendahl, & Kittler, 2018), and Fundus
Multi-disease dataset (Pachade et al., 2021).

The BUSI dataset is a commonly used ultrasound dataset for breast
tumors collected in 2018. The number of patients was 600 women. The
dataset consists of 780 images with an average image size of 500 x 500
pixels. The image is in PNG format. The images were classified as
normal, benign or malignant. In this paper, benign and malignant im-
ages were selected to be included in the classification experiment. The
MGH Breast dataset is a binary classification pathology image dataset
approved by the Partners Human Research Committee (Partners IRB). In
this study, 233 images of ductal carcinoma in situ (DCIS) and 110 images
of usual ductal hyperplasia (UDH) from MGH are included. The
HAM10000 dataset contains a large number of multi-source
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dermatoscopic images of common pigmented skin lesions (Philipp
Tschandl et al., 2018). The HAM10000 dataset is a multi-class dataset,
and this paper selected melanoma (MEL) and benign keratosis (BKL) for
classification experiments. MEL is a malignant neoplasm derived from
melanocytes that may appear in different variants. If excised in an early
stage it can be cured by simple surgical excision. Melanomas can be
invasive or noninvasive (in situ) (Schiffner et al., 2000; P. Tschandl,
Rosendahl, & Kittler, 2015). BKL is a generic class that includes sebor-
rheic keratoses, solar lentigo and lichen-planus like keratoses (Zaballos
et al., 2010). The Fundus Multi-disease is a fundus images dataset con-
sisting of 3200 images along with the expert annotations divided into
two categories: normal and abnormal. The detailed structure of the
datasets is shown in Table 1.

4.2. Implementation details and evaluation metrics

We implement all models using the PyTorch framework on Ubuntu
20.04 system, which is equipped with an Intel(R) Xeon(R) Platinum
8269CY CPU @ 2.50 GHz, alongside the NVIDIA GeForce RTX 3090 24
GB.

This paper selects the ResNet50 and Swin Transformer as the clas-
sification models for medical image classification. For ResNet50, the
initial learning rate is set to 1 x 10>, and the batch size is set to 80.
Experiments are conducted on the four datasets both before and after
SAM-IE, and the classification performance is compared. As for the Swin
Transformer, the initial learning rate is set to 1 x 104, and the batch size
is set to 48. Similarly, experiments are conducted on the four datasets
before and after SAM-IE, and the classification performance is
compared.

The classification performance before and after SAM-IE with
different classification methods is evaluated using commonly used
metrics in medical image classification: the area under the receiver
operating characteristic curve (AUC), accuracy, precision, sensitivity,
specificity, Youden’s index (YI) and F1 score. Additionally, to highlight
the differences in classification performance before and after SAM-IE,
this paper employs the Delong test to examine the differences in AUC
values between the results before and after SAM enhancement.

5. Results

With the support of SAM-IE, this study accomplished image
enhancement for the BUSL, MGH Breast, HAM10000, and Fundus Multi-
disease datasets, as depicted in Fig. 2. The initial row exhibits examples
of unaltered images from the four datasets. The second and third rows
showcase the binary masks and contour masks generated by SAM for
each example. The enhanced images by SAM-IE are presented in the last
row of Fig. 2. To highlight the effectiveness of SAM-IE on medical image
classification models, this paper compares the classification perfor-
mance on two networks (ResNet50 and Swin Transformer) before and
after using SAM-IE. Moreover, we have also supplemented the classifi-
cation performance of the four datasets used in this paper on seven other
common classification models, including DenseNet121, DenseNet161,
DenseNet169, ResNetl8, ResNet34, ResNeXt50.32 x 4D, and

Table 1
Statistical description of the BUSI, MGH Breast, HAM10000, and Fundus Multi-
disease datasets.

Dataset Label Overall Training Testing
BUSI Benign 437 350 87
Malignant 210 168 42
MGH Breast UDH 110 88 22
DCIS 233 186 47
HAM10000 MEL 1284 1113 171
BKL 1316 1099 217
Fundus Multi-disease Normal 669 535 134
Abnormal 2531 2025 506
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Fundus Multi-disease
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Fig. 2. Illustration of image enhancement with SAM-based Image Enhancement (SAM-IE). Two typical examples from each dataset were selected.

ResNeXt101_32 x 8D. The classification results on the four datasets are
shown in Table 2 and Table 3. Furthermore, to visually illustrate the
differences in classification results between with and without SAM-IE for
each set of experiments, receiver operating characteristic (ROC) curves
were plotted for each set of results, as depicted in Fig. 3.

As shown in Fig. 4, we use Grad-CAM++ to generate class activation
heatmaps of the test set images based on ResNet50 for visualizing the
contribution distribution of different regions in the input images to the
predicted outputs. In the heatmaps, areas with deeper red colors indicate
higher values, indicating that the corresponding regions have higher
response and contribution to the network. Thus, we can compare the
differences in contribution distribution in medical images before and
after using SAM-IE in the classification network through the heatmaps.

5.1. Breast tumor classification on BUSI dataset
Fig. 2a and Fig. 2b display ultrasound images of benign and malig-

nant breast tumors, showcasing the image enhancement processes with
SAM-IE. The SAM-IE enhancement method effectively highlights tumor

Table 2

regions and boundaries in the ultrasound images. The classification
experiments were conducted using the ResNet50 and the Swin Trans-
former models with and without SAM-IE. From Table 2, it can be seen
that the classification results of the BUSI images enhanced by SAM-IE on
both the ResNet50 and Swin Transformer models have shown significant
improvements over the original images. All classification indices
demonstrate noteworthy improvement. Furthermore, the classification
results of the enhanced BUSI images on the ResNet50 model are superior
to those on the Swin Transformer model. Compared to the classification
results of other models, the enhanced BUSI images still demonstrate
better performance on the ResNet50 model.

ROC curves with and without SAM-IE for both ResNet50 and Swin
Transformer models are depicted in Fig. 3a. For the ResNet50 model, the
AUC increased from 0.943 to 0.981 with SAM-IE enhancement (Delong
test: Z = -2.59, p < 0.05). For the Swin Transformer model, the AUC
increased from 0.927 to 0.975 with SAM-IE enhancement (Delong test:
Z =-2.13, p < 0.05). From Fig. 4, it can be seen that after enhancement
by SAM-IE, the tumor regions in the BUSI images contribute more to the
ResNet50 classification network, aiding in the accurate determination of

Classification results with our proposed SAM-IE on the BUSI and MGH Breast datasets based on ResNet50 and Swin Transformer (bottom two rows for each dataset),
compared with results of classic classification networks without SAM-IE including the DenseNet121, DenseNet161, DenseNet169, ResNet18, ResNet34, ResNet50,

ResNeXt50_32 x 4D, ResNeXt101_32 x 8D, and Swin Transformer.

Dataset Model AUC Accuracy Precision Sensitivity Specificity YI F1 score

BUSI DenseNet121 0.925 0.853 0.717 0.905 0.828 0.732 0.800
DenseNet161 0.919 0.868 0.755 0.881 0.862 0.743 0.813
DenseNet169 0.898 0.868 0.755 0.881 0.862 0.743 0.813
ResNet18 0.915 0.892 0.850 0.810 0.931 0.741 0.829
ResNet34 0.910 0.884 0.787 0.881 0.885 0.766 0.832
ResNet50 0.943 0.884 0.776 0.905 0.874 0.778 0.835
ResNeXt50_32 x 4D 0.939 0.923 0.848 0.929 0.920 0.848 0.886
ResNeXt101_32 x 8D 0.952 0.930 0.902 0.881 0.954 0.835 0.892
Swin Transformer 0.927 0.876 0.771 0.881 0.874 0.755 0.822
ResNet50 w/ SAM-IE 0.981 0.946 0.889 0.952 0.943 0.895 0.920
Swin Transformer w/ SAM-IE 0.975 0.961 0.974 0.905 0.989 0.893 0.938

MGH Breast DenseNet121 0.860 0.783 0.971 0.702 0.955 0.657 0.815
DenseNet161 0.894 0.826 1.000 0.745 1.000 0.745 0.854
DenseNet169 0.902 0.855 1.000 0.787 1.000 0.787 0.881
ResNet18 0.873 0.812 0.886 0.830 0.773 0.603 0.857
ResNet34 0.887 0.841 0.929 0.830 0.864 0.693 0.876
ResNet50 0.883 0.870 1.000 0.809 1.000 0.809 0.894
ResNeXt50_32 x 4D 0.906 0.913 0.902 0.979 0.773 0.752 0.939
ResNeXt101_32 x 8D 0.912 0.826 0.973 0.766 0.955 0.721 0.857
Swin Transformer 0.893 0.826 0.973 0.766 0.955 0.721 0.857
ResNet50 w/SAM-IE 0.981 0.928 0.977 0.915 0.955 0.869 0.945
Swin Transformer w/ SAM-IE 0.980 0.942 0.939 0.979 0.864 0.842 0.958
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Table 3
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Classification results with our proposed SAM-IE on the HAM10000 and Fundus Multi-disease datasets based on ResNet50 and Swin Transformer (bottom two rows for
each dataset), compared with results of classic classification networks without SAM-IE including the DenseNet121, DenseNet161, DenseNet169, ResNet18, ResNet34,

ResNet50, ResNeXt50_32 x 4D, ResNeXt101_32 x 8D, and Swin Transformer.

Dataset Model AUC Accuracy Precision Sensitivity Specificity YI F1 score

HAM10000 DenseNet121 0.852 0.778 0.703 0.860 0.714 0.574 0.774
DenseNet161 0.847 0.802 0.783 0.760 0.834 0.594 0.772
DenseNet169 0.841 0.789 0.731 0.825 0.760 0.585 0.775
ResNet18 0.908 0.851 0.805 0.871 0.834 0.705 0.837
ResNet34 0.862 0.804 0.741 0.854 0.765 0.619 0.794
ResNet50 0.906 0.851 0.816 0.854 0.848 0.702 0.834
ResNeXt50_32 x 4D 0.926 0.879 0.883 0.836 0.912 0.749 0.859
ResNeXt101_32 x 8D 0.912 0.845 0.776 0.912 0.793 0.705 0.839
Swin Transformer 0.902 0.820 0.742 0.906 0.751 0.658 0.816
ResNet50 w/ SAM-IE 0.931 0.879 0.869 0.854 0.899 0.752 0.861
Swin Transformer w/ SAM-IE 0.937 0.869 0.797 0.942 0.811 0.753 0.863

Fundus Multi-disease DenseNet121 0.934 0.831 0.995 0.791 0.985 0.776 0.881
DenseNet161 0.932 0.838 0.981 0.810 0.940 0.751 0.887
DenseNet169 0.933 0.842 0.981 0.816 0.940 0.757 0.891
ResNet18 0.942 0.888 0.982 0.874 0.940 0.814 0.925
ResNet34 0.951 0.863 0.998 0.828 0.993 0.821 0.905
ResNet50 0.946 0.883 0.970 0.879 0.896 0.775 0.922
ResNeXt50_32 x 4D 0.948 0.855 0.988 0.826 0.963 0.789 0.900
ResNeXt101_32 x 8D 0.946 0.870 0.980 0.854 0.933 0.787 0.912
Swin Transformer 0.946 0.880 0.976 0.870 0.918 0.788 0.920
ResNet50 w/SAM-IE 0.955 0.889 0.968 0.889 0.888 0.777 0.927
Swin Transformer w/ SAM-IE 0.959 0.903 0.985 0.891 0.948 0.839 0.936

the benignity or malignancy of breast tumors. In contrast, with the
original images, the classification network often overly focuses on arti-
facts in the ultrasound images, which can easily lead to diagnostic
errors.

5.2. Breast disease classification on MGH Breast dataset

Fig. 2¢ and Fig. 2d respectively depict two types of pathological
images, UDH and DCIS, along with their enhancement processes with
SAM-IE. The SAM-IE enhancement method emphasizes the character-
istics of cell regions and boundaries in the pathological images. Using
the ResNet50 model and Swin Transformer model, this study conducts
classification experiments with and without SAM-IE. Table 2 shows that
compared with the original images, the MGH Breast images enhanced by
SAM-IE achieved better AUC and accuracy on both the ResNet50 and
Swin Transformer models. The results of SAM-IE also showed more
balanced sensitivity and specificity, with significant improvements in YI
and F1 scores. Moreover, the classification results of the MGH Breast
enhanced images on the ResNet50 model were superior to those on the
Swin Transformer model. Compared with the classification results of
other models, the MGH Breast enhanced images still exhibited superior
performance on the ResNet50 model.

ROC curves with and without SAM-IE on the ResNet50 and Swin
Transformer models are illustrated in Fig. 3b. Incorporating SAM-IE
model led to a significant improvement in AUC for both the ResNet50
and Swin Transformer models. Specifically, for the ResNet50 model, the
AUC increased from 0.883 to 0.981 (Delong test: Z = -2.44, p < 0.05).
For the Swin Transformer model, the AUC increased from 0.893 to 0.980
with SAM-IE enhancement (Delong test: Z = -2.33, p < 0.05). From
Fig. 4, it is evident that after enhancement by SAM-IE, the effective
cellular areas in the MGH Breast images contribute more significantly to
the ResNet50 classification network. In contrast, with the original im-
ages, the classification network is unable to adequately focus on the
pathological areas that aid in diagnosis.

5.3. Skin lesions classification on HAM10000 dataset

Fig. 2e and Fig. 2f illustrate the dermatoscopic images of MEL and
BKL in the HAM10000 dataset alongside their enhancement processes
with SAM-IE. The SAM-IE model implemented in this study notably

accentuates the skin lesion area and sharpens the contour between the
lesion tissue and the surrounding tissue in the dermatoscopic images.
Using both ResNet50 and Swin Transformer models, this study con-
ducted classification experiments with and without SAM-IE. Table 3
shows that compared to the original images, the images enhanced by
SAM-IE demonstrate superior classification performance on both the
ResNet50 and Swin Transformer models, with significant improvements
in accuracy, precision, and specificity. The enhancement effect of SAM-
IE significantly improves the classification performance of BKL images.
Moreover, the classification results of the HAM10000 enhanced images
on the Swin Transformer model are superior to those on the ResNet50
model. Compared to the classification results of other models, the
HAM10000 enhanced images still exhibit superior performance on the
Swin Transformer model.

The ROC curves, depicted in Fig. 3¢, further highlight the positive
impact of enhancement with SAM-IE on classification performance for
both models. For the ResNet50 model, the AUC increased from 0.906 to
0.931 with SAM-IE model (Delong test: Z = -2.13, p < 0.05). For the
Swin Transformer model, the AUC witnessed an improvement from
0.902 to 0.937 with SAM-IE model (Delong test: Z = -2.65, p < 0.05).
From Fig. 4, it can be seen that after enhancement with SAM-IE, the skin
cancer lesion areas in the HAM10000 images contribute more signifi-
cantly to the ResNet50 classification network, aiding in the accurate
determination of the cancer type. In contrast, for the original images, the
classification network is unable to effectively focus on the lesion areas.

5.4. Fundus state classification on fundus Multi-disease dataset

Fig. 2g and Fig. 2h display fundus images under normal and
abnormal conditions, respectively, along with the enhancement process
by SAM-IE model. In the binary mask, it is evident that SAM enhances
the visual field of the fundus image. However, the effectiveness of SAM-
IE model in distinguishing optic disc, optic cup, and background areas is
not prominent in this context. Conversely, the contour mask illustrates a
clearer delineation of the optic disc boundary, but SAM-IE still exhibits
limitations in identifying the optic cup.

Employing both ResNet50 and Swin Transformer models, this paper
conducts classification experiments with and without SAM-IE model.
Table 3 reveals that, in comparison to the original image, enhanced
results by SAM-IE on the ResNet50 model exhibit slight improvements,
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Fig. 3. Receiver operating characteristic (ROC) curves for classification with and without SAM-IE based on ResNet50 (left) and Swin Transformer (right) models on
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the BUSI (a), MGH Breast (b), HAM10000 (c), and Fundus Multi-disease (d) datasets.
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w/ SAM-IE

Fig. 4. The class activation heatmaps generated from the test set images based on the ResNet50 model. Two typical examples from each dataset were selected. The
heatmaps on the left show the results without SAM-IE, while the heatmaps on the right show the results with SAM-IE.

with significant enhancements in sensitivity. These results indicate that
fundus image enhancement by SAM-IE can improve the classification
performance of abnormal images to some extent. For the Swin Trans-
former model, compared to the original image, enhanced fundus images
achieve superior classification results, with notable improvements in
various classification indicators. Additionally, the classification results
of enhanced fundus images are superior on the Swin Transformer model
compared to the ResNet50 model. In comparison to the results of other
models, the classification outcomes of enhanced fundus images still
demonstrate superiority on the Swin Transformer model.

The ROC curves, depicted in Fig. 3d, provide a visual representation
of the impact of fundus image enhancement by SAM-IE on classification
performance for both ResNet50 and Swin Transformer models. For the
ResNet50 model, the AUC witnessed a marginal increase from 0.946 to
0.955 with SAM-IE model (Delong test: Z = -1.50, p = 0.13). Meanwhile,
for the Swin Transformer model, the AUC increased from 0.946 to 0.959
with SAM-IE model (Delong test: Z =-2.10, p < 0.05). From Fig. 4, it can
be observed that after SAM-IE enhancement, the pathological regions in
the fundus images contribute more to the ResNet50 classification
network, aiding in accurately determining the abnormalities in the
fundus images. In contrast, the classification network’s ability to focus
on the pathological regions is poorer in the original images.

6. Discussion

In recent years, the advent and rapid advancement of SAM have
yielded commendable achievements in image segmentation, particu-
larly in natural image segmentation, where SAM can achieve more ac-
curate results when guided by prompts. However, due to the substantial
differences between medical and natural images, SAM’s segmentation
performance in medical images falls short of satisfactory levels. The
effective application of SAM in medical image processing and disease
diagnosis remains extensive attention. During exploration, it was
observed that while SAM may not precisely segment lesion or tissue
regions, it could output the most probable region of interest in an image
by limiting the confidence level of the segmentation region. In clinical
diagnosis, radiologists typically focus on morphological and structural
changes in lesion or tissue areas and their surroundings. Hence, in this

study, SAM is employed to extract regions of interest with certain
probabilities in medical images. These regions and their boundaries are
then highlighted and emphasized in the original image to generate
enhanced images. To assess the potential impact of enhanced images by
SAM-IE on disease diagnosis, comparative experiments are designed
with and without SAM-IE, using the ResNet50 model and Swin Trans-
former model, respectively.

According to the classification results, all performance metrics for
both the ResNet50 and Swin Transformer models, using the BUSI and
HAM10000 dataset after enhancement by SAM-IE, have displayed sig-
nificant improvements, with discernible statistical difference in the AUC
(Table 2, Table 3, Fig. 3a and Fig. 3c). By observing Fig. 2, we can find
that the images in these datasets contain a single target region, and
enhancement operation with SAM-IE accurately identifies and locates
the region of interest within the image. Furthermore, considering the
sizable lesion area and distinct lesion morphology in these images, the
enhancement with SAM-IE demonstrates advantageous in the diagnostic
process. For the enhanced images of MGH Breast dataset, it’s noticeable
that cells in the images are not entirely recognized. However, when
comparing Fig. 2¢ and Fig. 2d, there are fewer unrecognized cells in
Fig. 2d, indicating a better enhancement effect on DCIS images.
Consequently, the sensitivity in the classification results with SAM-IE on
the MGH Breast dataset surpasses that without SAM-IE (Table 2). Due to
the inherent characteristics of fundus images, the SAM-IE can enhance
the entire circular visual field of fundus images without specific
prompts. Although the area and boundaries of optic disc and optic cup
are highlighted to some extent, the contour between the optic cup and
the surrounding area remains unclear in the enhanced image (Fig. 2).
The classification results of SAM-IE enhanced fundus images demon-
strated improvement on both ResNet50 model and Swin Transformer
model compared to those without SAM-IE enhancement. However, this
improvement effect is not significant (Table 3). On the other side, the
comparison of ROC curves on the ResNet50 model in Fig. 3d indicate no
significant difference, which also shows the improvement effect is weak.
Moreover, it can be observed that compared to the experimental results
of other 7 classification models without SAM-IE, the classification results
after using SAM-IE image enhancement in this paper still exhibit supe-
riority (Table 2, Table 3). From Fig. 4, it can be seen that after SAM-IE
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enhancement, the pathological regions in the images can contribute
more to the classification network, thereby improving the accuracy of
classification. In contrast, for the original images, the classification
network tends to overly focus on the distracting factors in the images,
leading to diagnostic errors.

Based on the aforementioned experimental results, it is evident that
the SAM-IE model effectively accentuates lesions or tissue areas in the
images, consequently improving the classification accuracy of medical
image. Notably, the SAM-IE model demonstrates superior effects on
images featuring a single object, large area, and clear boundaries.
However, it is susceptible to interference from additional information in
the image, compromising the enhancement of the target region.

To further improve performance of SAM-IE in medical image clas-
sification, several feasible strategies can be considered. Firstly, the
incorporation of a prompt module into the SAM-IE could enhance the
accuracy of recognizing the enhanced region in the images. Secondly,
the impact of SAM-IE can be assessed using various medical image
classification models to bolster the reliability of the SAM-IE model.
Additionally, a comprehensive evaluation of the SAM-IE model’s impact
on medical image classification could be conducted through a collabo-
rative approach that involves both radiologists and -classification
models.

7. Conclusions

The classification results across the four public datasets demonstrate
that SAM-IE contributes to an improvement in the performance of
medical image classification models. Moreover, the SAM-IE model
proposed in this study exhibits particular suitability for images charac-
terized by a large area, a small number of target areas, and significant
morphological differences from the surrounding regions. By accentu-
ating the target region and its contour in the image, the SAM-IE model
elevates the classification performance of the ResNet50 and Swin
Transformer models. This verification process not only emphasizes the
efficacy of SAM-IE for disease diagnosis on various imaging modalities
but also expands the application scope of SAM in medical image
analysis.
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